Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper presents a virtual patient generator (VPG) intended to be used for preclinical in silico evaluation of autonomous vasopressor administration algorithms in the setting of experimentally induced vasoplegia. Our VPG consists of two main components: (i) a mathematical model that replicates physiological responses to experimental vasoplegia (induced by sodium nitroprusside (SNP)) and vasopressor resuscitation via phenylephrine (PHP) and (ii) a parameter vector sample generator in the form of a multidimensional probability density function (PDF) using which the parameters characterizing the mathematical model can be sampled. We developed and validated a mathematical model capable of predicting physiological responses to the administration of SNP and PHP. Then, we developed a parameter vector sample generator using a collective variational inference method. In a blind testing, the VPG developed by combining the two could generate a large number of realistic virtual patients (VPs), which could simulate physiological responses observed in all the experiments: on the average, 98.1% and 74.3% of the randomly generated VPs were physiologically legitimate and adequately replicated the test subjects, respectively, and 92.4% of the experimentally observed responses could be covered by the envelope formed by the subject-replicating VPs. In sum, the VPG developed in this paper may be useful for preclinical in silico evaluation of autonomous vasopressor administration algorithms.more » « lessFree, publicly-accessible full text available May 1, 2026
-
This paper investigates the feasibility of detecting and estimating the rate of internal hemorrhage based on continuous noninvasive hematocrit measurement. A unique challenge in hematocrit-based hemorrhage detection is that hematocrit decreases in response to hemorrhage and resuscitation with fluids, which makes hemorrhage detection during resuscitation challenging. We developed two sequential inference algorithms for detection of internal hemorrhage based on the Luenberger observer and the extended Kalman filter. The sequential inference algorithms use fluid resuscitation dose and hematocrit measurement as inputs to generate signatures to enable detection of internal hemorrhage. In the case of the extended Kalman filter, the signature is nothing but inferred hemorrhage rate, which allows it to also estimate internal hemorrhage rate. We evaluated the proof-of-concept of these algorithms based on in silico evaluation in 100 virtual patients subject to diverse hemorrhage and resuscitation rates. The results showed that the sequential inference algorithms outperformed naïve internal hemorrhage detection based on the decrease in hematocrit when hematocrit noise level was 1% (average F1 score: Luenberger observer 0.80; extended Kalman filter 0.76; hematocrit 0.59). Relative to the Luenberger observer, the extended Kalman filter demonstrated comparable internal hemorrhage detection performance and superior accuracy in estimating the hemorrhage rate. The analysis of the dependence of the sequential inference algorithms on measurement noise and plant parametric uncertainty showed that small (≤1%) hematocrit noise level and personalization of sequential inference algorithms may enable continuous noninvasive detection of internal hemorrhage and estimation of its rate.more » « less
An official website of the United States government
